

Oracle Banking Digital

Experience
Extensibility Guide

Release 19.1.0.0.0

Part No. F18558-01

May 2019

Extensibility Guide ii

Extensibility Guide

May 2019

Oracle Financial Services Software Limited

Oracle Park

Off Western Express Highway

Goregaon (East)

Mumbai, Maharashtra 400 063

India

Worldwide Inquiries:

Phone: +91 22 6718 3000

Fax:+91 22 6718 3001
www.oracle.com/financialservices/

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer software” pursuant to
the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure,
modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use
this software or hardware in dangerous applications, then you shall be responsible to take all appropriate failsafe, backup,
redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and
are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not
use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

This software or hardware and documentation may provide access to or information on content, products and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

http://www.oracle.com/financialservices/

Extensibility Guide iii

Table of Contents

1. Preface ... 6

1.1 Intended Audience .. 6

1.2 Documentation Accessibility ... 6

1.3 Access to Oracle Support ... 6

1.4 Structure .. 6

1.5 Related Information Sources... 6

2. Objective and Scope .. 7

2.1 Background ... 7

2.2 Objective ... 7

2.3 Scope .. 8

2.4 Structure .. 9

3. Architecture of Service Tier .. 10

4. Extensible Points in Service Tier .. 12

4.1 REST Tier .. 12

4.1.1 Guidelines ... 12

4.1.2 HTTP Standards.. 13

4.2 Service Extensions .. 14

4.2.1 Service Extension Interface .. 16

4.2.2 Service Extension Executor Interface ... 17

4.2.3 Default Extension (Void Extension) ... 18

4.2.4 Custom Extension ... 18

4.2.5 Service Extension Configurations ... 19

4.2.6 Sequence of events in service extension .. 19

4.3 Business Policy ... 21

4.3.1 Adding new business policy .. 22

4.3.2 Extending existing business policy.. 23

4.4 Dictionary .. 23

4.5 Domain Extensions ... 27

4.5.1 Custom Domain Objects ... 27

4.5.2 Adding new Domain .. 34

Extensibility Guide iv

4.6 Error Messages ... 35

4.6.1 Adding Error Message .. 35

4.6.2 Mapping Host Error Code To OBDX Error Code .. 35

4.7 Adapter Tier... 35

4.7.1 Service Provider Interface (SPI) Approach ... 35

4.7.2 Adding a custom adapter .. 39

4.7.3 Host adapter extension to populate pagination information .. 44

4.8 Outbound web service extensions .. 45

4.9 Security Customizations .. 49

4.9.1 Out of box seeding of policies ... 49

4.10 Taxonomy Validations ... 49

4.11 Miscellaneous.. 49

4.11.1 Task Configurations .. 49

5. Architecture of GUI Tier ... 61

6. Extensible Points in GUI Tier .. 62

6.1 Theme and Brand ... 62

6.2 Component Extensibility .. 62

6.2.1 Adding New and Overriding Existing Components ... 62

6.2.2 Add / Modify Validations .. 63

6.3 Calling custom REST service .. 64

7. Libraries... 65

7.1 OBDX Libraries ... 65

7.1.1 Core/Framework Libraries ... 65

7.1.2 Common Librarie ... 66

7.1.3 Modules ... 67

7.1.4 Endpoints .. 69

7.1.5 External System Adapters ... 69

8. Workspace Setup ... 70

8.1 Basic Setup ... 70

8.2 DTO (xface) project ... 71

8.3 REST endpoint .. 72

8.4 Module ... 73

8.5 Adapter .. 75

8.6 Adapter Impl .. 75

Extensibility Guide v

8.7 SOAP client ... 77

9. Deployment ... 78

Preface

Extensibility Guide 6

1. Preface

1.1 Intended Audience

This document is intended for the following audience:

 Customers

 Partners

1.2 Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program

website at http://www.oracle.com/pls/topic/lookup?ctx=accandid=docacc.

1.3 Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information,
visit

http://www.oracle.com/pls/topic/lookup?ctx=accandid=info or visit

http://www.oracle.com/pls/topic/lookup?ctx=accandid=trs if you are hearing impaired.

1.4 Structure

This manual is organized into the following categories:

Preface gives information on the intended audience. It also describes the overall structure of the
User Manual.

The subsequent chapters describes following details:

 Purpose

 Configuration / Installation.

1.5 Related Information Sources

For more information on Oracle Banking Digital Experience Release 19.1.0.0.0, refer to the
following documents:

 Oracle Banking Digital Experience Licensing Guide

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Objective and Scope

Extensibility Guide 7

2. Objective and Scope

2.1 Background

OBDX is designed to help banks respond strategically to today’s business challenges, while also
transforming their business models and processes to reduce operating costs and improve
productivity across both front and back offices. It is a one-stop solution for a bank that seeks to
leverage Oracle Fusion experience across its core banking operations across its retail and
corporate offerings.

OBDX provides a unified yet scalable IT solution for a bank to manage its data and end-to-end
business operations with an enriched user experience. It comprises pre-integrated enterprise
applications leveraging and relying on the underlying Oracle Technology Stack to help reduce in-
house integration and testing efforts.

2.2 Objective

While most product development can be accomplished via highly flexible system parameters and
business rules, further competitive differentiation can be achieved via IT configuration &
extension support. Time consuming, custom coding to enable region specific, site specific or bank
specific customizations can be minimized by offering extension points and customization support
which can be implemented by the bank and / or by partners.

Extensibility objective

OBDX when extended & customized by the Bank and / or Partners results in reduced
dependence on Oracle. As a result of this, the Bank does not have to align plans with Oracle’s
release plans for getting certain customizations or product upgrades. The bank has the flexibility
to choose and do the customizations themselves or have them done by partners.

One of the key considerations towards enabling extensibility in OBDX has been to ensure that the
developed software can respond to future growth. This has been achieved by disciplined software
development leading to cleaner dependencies, well defined interfaces and abstractions with
corresponding reduction in high cohesion & coupling. Hence, the extensions are kept separate
from Core – Bank can take advantage of OBDX Core upgrades as most extensions done for a
previous release can sit directly on top of the upgraded version. This reduces testing effort
thereby reducing overall costs of planning & taking up an upgrade. This would also improve TTM
significantly as the bank enjoys the advantage of getting universal features through upgrades.

The broad guiding principles w.r.t. providing extensibility in OBDX are summarized below:

 Strategic intent for enabling customers and partners to extend the application.

 Internal development uses the same principles for client specific customizations.

 Localization packs.

 Extensions by Oracle Consultants, Oracle Partners, Banks or Bank Partners.

 Extensions through the addition of new functionality or modification of existing functionality.

 Planned focus on this area of the application.

 Standards based.

 Leverage large development pool for standards based technology.

 Developer tool sets provided for as part of JDeveloper and Eclipse for productivity.

Objective and Scope

Extensibility Guide 8

2.3 Scope

The scope of this document is to explain the customization & extension of OBDX for the
following use cases:

 Customizing OBDX application services and implement composite application services

 Adding pre-processing or post processing validations in the application services extension

 Adding Business Logic in pre hook or post hook points in the application services extension

 Altering the product behavior at customizations hooks provided as adapter calls in
functional areas that are prone to change and in between modules that can be replaced
(e.g. alerts, content management)

 Adding new fields to the OBDX domain model and including it on the corresponding screen.

 Defining the security related access and authorization policies

 Defining different security related rules, validator and processing logics

 Customizing OBDX UI

 Adding a new field or a table on the screen

 Removing fields from the UI

This document would be a useful tool for Oracle Consulting, bank IT and partners for customizing
and extending the product.

The document is a developer’s extensibility guide and does not intend to work as a replacement
of the functional specification which would be the primary resource covering the following:

 OBDX installation & configuration.

 OBDX parameterization as part of implementation.

 Functional solution and product user guide.

Objective and Scope

Extensibility Guide 9

Out of scope

The scope of extensibility does not intend to suggest that OBDX is forward compatible.

2.4 Structure

This document is organized into following chapters

 Architecture of Service Tier: Provides overall architecture of the service tier of OBDX
platform. This chapter will set the context for further chapters and also will introduce you to
various terminologies that you will encounter throughout this document

 Extensible Points in Service Tier: Provides in depth knowledge about various extensible
hooks available in the service tier.

 Architecture of GUI Tier: Provides overall architecture of the GUI tier of OBDX platform.
This chapter will introduce you to various terminologies that you will encounter for UI
extensibility.

 Extensible points in GUI Tier: Provides in depth knowledge about various extensible hooks
available in the GUI tier.

 Libraries: Provides a listing of various libraries provided by OBDX out of the box along with
their usage

 Workspace Setup: Provides step by step guidelines for setting up Eclipse workspace for
extensibility

 Deployment: Provides information in packaging and deployment of the customized code on
Weblogic server

 GUI Tier – Workspace Setup: Provides step by step guidelines for setting up workspace for
GUI tier extensibility

 GUI Tier – Deployment: Provides information on packaging and deployment of customized
GUI code on HTTP server

 Use Cases: This chapter discusses some of the extensibility points covered in earlier
chapters with the help of some use cases.

Home

Architecture of Service Tier

Extensibility Guide 10

3. Architecture of Service Tier

Let’s go through the building blocks of OBDX framework (also known as DIGX framework). To
build a REST API, each of these framework components (as mentioned below) needs to be
addressed and that’s why it becomes important to have a holistic idea about each of them. The
arrangement of all of these framework components can be clearly understood in the following
diagram:

Figure 1 DIGX Service Layer

1. REST: The endpoint layer which gets invoked whenever a request URI is called. Also
known as the layer which contains REST annotations and path to resources or sub-
resources of an application

2. Service: Also called as module layer of the framework. Generally, the core modules of
DIGX application will have their own service implementation classes responsible for
implementing core business logic, validation and security checks

3. Assemblers: These are the mapping classes which convert data object containing request
or response parameters into domain or database compatible form. These classes help us to
get the required domain objects which can be further used in object-relational mapping

4. Business Policy/ System Constraints: Before letting the query data read or persisted in
the core application, certain business policies need to be validated. This separate layer of
constraints check let the application behave as per the policies configured

5. Domain/Entity: Represents the Java Object form of Database. This domain layer also
contains data to be persisted or query response fetched through Object relational mapping

6. Domain Repository: The term ‘repository’ denotes any data storage component. Each
module of the application will have its own repository to manage its CRUD operations and
that can be easily done using this component of the DIGX framework

7. Domain Repository Adapter: Adapters are the connecting points to some external system
and as the name suggests, this part of the framework contacts two kinds of repositories of
DIGX application – Local Repository and Remote Repository. Eventually, the configured
one out of these two will be invoked

Architecture of Service Tier

Extensibility Guide 11

8. Adapters: Finally these are the adapter classes that can call either Local Database (DIGX
specific tables) or Remote Repository (external system). Remote adapters can further be
mocked if required

9. External System/ Host: The core banking application such as UBS/FCORE or OBP or any
third-party application which operates final banking transactions.

Home

Extensible Points in Service Tier

Extensibility Guide 12

4. Extensible Points in Service Tier

Various extensible points / hooks provided by OBDX framework, are explained in detail in this
section

4.1 REST Tier

Customization developer can extend the REST tier by writing new REST services. This new
REST service will consume new or existing application service. Please note that it is not possible
to customize the REST services provided out of the box. Extensibility in REST tier is limited to
writing new services.

References:

Please refer to workspace setup of DTO (xface) and REST service.

Please refer to Use case 1 for steps to write new REST service along with sample code.

4.1.1 Guidelines

 OBDX REST tier follows façade pattern, meaning that it is just an endpoint built on top of
application service(s).

 A REST service should not have any business logic. It should consume one or more
application services and prepare the response.

 Before coding a new REST service, developer should decide the resource(s) and sub-
resources(s) that s/he needs to develop. Based on this, the developer can design required
URIs. E.g. A ‘Demand Deposit Account’ is a resource in the system and
/accounts/demandDeposit/{accountId} is the REST URI to access it.

 The service should be annotated suitably using JAX-RS annotations.

 The service should wrap its operation in ‘Channel Interaction’.

 The service should use adequate logging.

Extensible Points in Service Tier

Extensibility Guide 13

4.1.2 HTTP Standards

HTTP Methods

OBDX resources support following HTTP methods. New services also should use these methods
appropriately.

Method Purpose

GET Retrieve / fetch the resource

POST Create a new resource

PUT Update / modify an existing resource. The payload is expected to have full

resource.

PATCH Update / modify very small part of an existing resource. The payload is

expected to have only the fields to be updated.

DELETE Delete a resource

HTTP Response Codes

Following HTTP response codes are used. New REST services should return appropriate
response code based on result of the operation.

Code Status Description

200 OK Request successfully executed and the response has content

201 Created Resource successfully created

202 Accepted Request has been accepted for processing but processing has

not been completed

204 No Content Request successfully executed and the response doesn't have

content

304 Not Modified The resource has not been modified for a conditional GET

request

Extensible Points in Service Tier

Extensibility Guide 14

400 Bad Request The request could not be understood by the server due to

malformed syntax

401 Unauthorized The request requires user authentication, or authorization has

been refused for the credential passed in the request

404 Not Found The requested resource was not found

500 Internal Server

Error

The server encountered an unexpected condition which

prevented it from fulfilling the request

4.2 Service Extensions

This extension point should be used when the customization developer needs additional business
logic for an application service. This additional logic, which is not available as part of the digital
experience product functionality, but could be a client requirement. For these purposes, two
hooks are provided in the application code:

Pre-extension hook

This extension point is available in application service before it performs any validations and
executes business logic. This hook can be important in the following scenarios:

 Additional input validations

 Execution of business logic, which necessarily has to happen before going ahead with
normal service execution.

Post-extension hook

This extension point is available in the application service after it has executed business logic.
This hook can be important in the following scenarios:

 Output response manipulation

 Custom data logging for subsequent processing or reporting.

Both ‘pre’ and ‘post’ service extensions are available in the application service layer (also known
as the ‘app’ layer) of OBDX.

Extensible Points in Service Tier

Extensibility Guide 15

This hook in implemented using service extension executor and service extensions. These
components are explained in detail below. Customization developer can use these components
suitably based on the requirement.

Below class diagram depicts the relationship between application service, extension executor and
extensions. The diagram considers a sample ‘create’ method in application service.

Note: The RequestDTO and ResponseDTO components depicted in above diagram are
explained in subsequent sections. For now, note that the RequestDTO contains inputs to the
application service method and ResponseDTO contains output generated by the method.

Extensible Points in Service Tier

Extensibility Guide 16

4.2.1 Service Extension Interface

This interface has a pair of pre and post method definitions for each application service method of
the present. A service extension class has to implement this interface. The ‘pre’ method is the
pre-extension hook as explained before. Similarly the ‘post’ method is the post-extension hook.

Multiple implementations can be defined for a particular service. The service extensions executor
invokes all the implementations defined for the particular service both before and after the actual
service executes. The signatures of these methods are:

public void pre<Method_Name>(SessionContext, <Method_Parameters>) throws Exception;

public void post<Method_Name>(SessionContext, <Method_Parameters>, ResponseDTO)
throws Exception;

Naming Convention

The naming convention of service extension interface is

I<Service_Name>Ext

For example, consider below code sample.

Extensible Points in Service Tier

Extensibility Guide 17

4.2.2 Service Extension Executor Interface

This acts as an interface for the application service to access service extensions. The
implementing class creates an instance each of all the extensions defined in the service
extensions configuration file. If no extensions are defined for a particular service, the executor
creates an instance of the default extension for the service. The executor also has a pair of pre
and post methods for each method of the actual service. These methods in turn call the
corresponding methods of all the extension classes defined for the service (extension chaining).

Naming convention

The naming convention for extension executor class is as below:

Interface : I<Service_Name>ExtExecutor

Implementation : <Service_Name>ExtExecutor

For example, consider below code sample:

Extensible Points in Service Tier

Extensibility Guide 18

4.2.3 Default Extension (Void Extension)

This class, named as Void<Service_Name>Ext, is provided out of the box for each application
service. This class implements the aforementioned service extension interface without any
business logic viz. the implemented methods are empty.

The default extension is a useful & convenient mechanism to implement the pre and / or post
extension hooks for specific methods of an application service. Instead of implementing the entire
interface, one should extend the default extension class and override only required methods with
the additional business logic. Product developers do not implement any logic, including product
extension logic, inside the default extension classes.

For example:

4.2.4 Custom Extension

Below is an example of customized service extension class that implements methods of
application service extension interface. This class contains pre hook and post hook point for the
service. The pre method of this customized extension is executed before the actual service
method and the post method of this is executed after the service method.

Extensible Points in Service Tier

Extensibility Guide 19

Note: The concept of ‘Dictionary’ is explained in detail in subsequent section.

4.2.5 Service Extension Configurations

Set the property id and the property values in the digx_fw_config_all_b table. The property id will
be the fully qualified name of the service and the value will be the fully qualified name of the
custom extension created.

For example:

insert into digx_fw_config_all_b (PROP_ID, CATEGORY_ID, PROP_VALUE,
FACTORY_SHIPPED_FLAG, PROP_COMMENTS, SUMMARY_TEXT, CREATED_BY,
CREATION_DATE, LAST_UPDATED_BY, LAST_UPDATED_DATE, OBJECT_STATUS_FLAG,
OBJECT_VERSION_NUMBER)

values ('com.ofss.digx.app.origination.service.submission.applicant.Applicant',
'ServiceExtensionsConfig',
'com.ofss.digx.app.origination.service.submission.application.ext.CustomLoanApplicationExtensi
on', 'N', 'asdf', 'asdf', 'asdf', '', 'asdf', '', 'Y', 1);

4.2.6 Sequence of events in service extension

Every application service method has a standard set of framework method calls as shown in the
sequence diagram below:

Extensible Points in Service Tier

Extensibility Guide 20

The pre hook is provided after the invocation of fetchTransactionStatus call inside the application
service. At this step, the current task code is received , any additional manipulation of the input
received from the User interface channel can be done in the pre hook. Apart from this additional
data coming from the screen specific to client requirements can be handled in the pre hook.

The post hook is provided after the business logic corresponding to the application service
invoked has executed and before the successful execution of the entire service is marked in the
status object. This ensures that the status marking takes into consideration any execution
failures of post hook prior to reporting the result to the calling source. Both, the pre and the post
hooks accept the service input parameters as the inputs. The post hook also accepts the
Response parameter as the input.

Extensible Points in Service Tier

Extensibility Guide 21

4.3 Business Policy

OBDX supports three types of validations

DTO field validations: These are the field level validations such as syntax check of the input.
These validations are achieved by using field level annotations in request DTO. These validations
are not available for extension. Below is the list of out of box annotations available

Annotation Description

@Email This annotation is used to validate the respective field with email

regular- expression. If the field doesn't satisfy the mentioned

regular-expression then the respective error code is thrown

@Mandatory This annotation marks the fields as mandatory. Once marked, if

the field is null then respective error-code is thrown

Eg. @Mandatory(errorCode =

DemandDepositErrorConstants.DDA_MANDATORY_ACCOUNT_ID)

 private Account accountId;

@Length This annotation marks the lengths of the fields. Once marked, if

the validation is violated then the respective error code is thrown.

Eg. @Length(min = 2, max = 20, errorCode =

PartyErrorConstants.PI_LENGTH_EXTERNAL_REF_ID)

@NonNegative This annotation checks that the value is non-negative

@Regex This annotation checks if the value matches regular expression

provided

System Constraints: System performs these checks mandatorily. It is not possible to override or
bypass these checks.

Business Policies: These are typically the business validations required to be performed before
executing business logic. OBDX framework allows customization developer to override business
policies as per the requirement.

Extensible Points in Service Tier

Extensibility Guide 22

4.3.1 Adding new business policy

Customization developer can add new business policy for new or existing services. System
support multiple business policies for a single service.
Following are the steps to add a new business policy:

1. Create new business policy DTO. This DTO is supposed to encapsulate all the input fields
upon which validation is to be performed.

2. Create new business policy. BusinessPolicy class must have constructor which accepts one
parameter of type IBusinessPolicyDTO. This class must extend
com.ofss.fc.framework.domain.policy.AbstractBusinessPolicy class and implement the
validatePolicy() method.
This method should have the validation logic and if the validation fails, then it should call
addValidationError() method with a new instance of ValidationError as parameter. One of
the parameter to the constructor of ValidationError is error code. A new error could be
added by following guidelines provided in Error Messages section.

3. Use of isPolicyToBeValidated() method
In case multiple business policies configured for one service then policy execution can be
controlled by overriding isPolicyToBeValided() method in CustomBusinessPolicy class.
By default, all Business Policies configured in DB will be executed as
isPolicyToBeValidated() method in AbstractBusinessPolicy will always return true.
To control the business policy validation based on data check, please override method
isPolicyToBeValidated() in your BusinessPolicyClass.

4. Configure new business policy(s). The business policy class created in above step
should be configured in digx_fw_config_all_b table with category_id as
‘CustomBusinessPolicy’ and prop_id as the policy identifier.

insert INTO digx_fw_config_all_b (prop_id, category_id, prop_value,
actory_shipped_flag, prop_comments, summary_text, created_by, reation_date,
last_updated_by, last_updated_date, object_status_flag,
object_version_number)VALUES ('<service_id>',' CustomBusinessPolicy ',

'<CustomBusinessPolicy1>,<CustomBusinessPolicy2>','N','Comments','Summary','ofss
user', sysdate, 'ofssuser', sysdate, 'Y', 1);
For example:
insert INTO digx_fw_config_all_b (prop_id, category_id, prop_value,
actory_shipped_flag, prop_comments, summary_text, created_by, reation_date,
last_updated_by, last_updated_date, object_status_flag,
object_version_number)VALUES ('com.ofss.digx.app.report.service.ReportRequest.create
',' CustomBusinessPolicy
','com.ofss.digx.cz.domain.td.entity.policy.CustomBusinessPolicy1,com.ofss.digx.cz.domain
.td.entity.policy.CustomBusinessPolicy2','N','Comments','Summary','ofssuser', sysdate,
'ofssuser', sysdate, 'Y', 1);

Extensible Points in Service Tier

Extensibility Guide 23

The class diagram for new custom business policy.

4.3.2 Extending existing business policy

OBDX provides out of box business policies for all services. If only a part of the validation is to be
modified or a new validation is to be added in addition to the validations that the existing business
policy does, then it is possible to extend existing business policy and override existing validation.

Please note that this capability depends on how the original business policy is coded. If the out of
box business performs all its validations in validatePolicy() method, then this approach may not
be useful. On the other hand, if the out of box business policy has separate individual methods for
validations and validatePolicy() method calls these methods one by one, then extension of the
business policy is useful.

The steps to be followed as same as mentioned in earlier section, except the difference that the
custom business policy class will extend the out of box business policy class and override its
methods as per the requirement.

4.4 Dictionary

Dictionary is not an extension point in itself, but it plays an important role in enabling extensibility
of domain. Hence, it is worth understanding the ‘Dictionary’ before proceeding to subsequent
sections

Data transfer object (DTO)

Data transfer object (DTO) is a design pattern used to transfer data between an external system
and the application service. All the information may be wrapped in a single DTO containing all
the details and passed as input request as well as returned as an output response. The client can
then invoke accessory (or getter) methods on the DTO to get the individual attribute values from
the Transfer Object. All request response classes in OBDX application services are modelled as
data transfer objects.

Extensible Points in Service Tier

Extensibility Guide 24

Dictionary

All data transfer objects extend a base class DataTransferObject which holds an array of
Dictionary object. The Dictionary encapsulates an array of NameValuePairDTO which is used to
pass data of custom data fields or attributes from the UI layer to the host middleware. Below class
diagram shows the relationship between these classes

Extensible Points in Service Tier

Extensibility Guide 25

Extensible Points in Service Tier

Extensibility Guide 26

Dictionary class looks like

Following image shows use of dictionary with NameValuePairDTO and added it to the Data
Transfer Object.

Extensible Points in Service Tier

Extensibility Guide 27

4.5 Domain Extensions

The Domain layer is a central layer in designing entities in OBDX. The design philosophy is called
domain driven design. In this, the domain object (also referred as ‘entity’ in OBDX context) is
central to the design. The domain captures all attributes of the real time entity that it models.

OBDX provides infrastructure to customize existing domains. It also allows to add new domains.

4.5.1 Custom Domain Objects

OBDX framework (leveraging undelaying OBP infrastructure) provides a standard mechanism to
customize the domain objects that are provided out of the box. The Dictionary object plays an
important role in this mechanism.

This section describes how consultants or other third parties can extend domain and achieve
Extensibility. This provides true domain model extension capabilities by allowing addition of
custom data fields to the underlying domain objects.

Translating Dictionary data into custom domain object

If dictionary is added to DTO then it is necessary to get customized domain Object which extends
base Domain Object. Method getCustomizedDomainObject in AbstractAssembler is used for the
same.

Following image shows call to get Customized domain Object if additional data (Dictionary) is
added to the request DTO.

Extensible Points in Service Tier

Extensibility Guide 28

Writing Custom Domain Object

The custom domain object must extend existing domain object class. Mapping for same should
be done in database as Customized Abstract Domain Object Configuration. This class contains
additional fields added at UI layer and getter, setter for the same.

Below diagram shows the custom domain object and also depicts the role of Dictionary in
mapping additional fields from DTO to this custom domain object.

Extensible Points in Service Tier

Extensibility Guide 29

For Example:

Configure Customized domain object in database

The domain object created needs to be mapped as a custom domain object for the existing
domain object. For example:

insert into digx_fw_config_all_b (PROP_ID, CATEGORY_ID, PROP_VALUE,

FACTORY_SHIPPED_FLAG, PROP_COMMENTS, SUMMARY_TEXT, CREATED_BY,

CREATION_DATE, LAST_UPDATED_BY, LAST_UPDATED_DATE, OBJECT_STATUS_FLAG,

OBJECT_VERSION_NUMBER)

values ('com.ofss.digx.domain.origination.entity.submission.lending.application',

'CustomizedAbstractDomainObjectConfig',

'com.ofss.digx.domain.origination.entity.submission.lending.application.ext.Application', 'N', 'asdf',

'asdf', 'asdf', '', 'asdf', '', 'Y', 1);

Three main columns that need to be fed with new information are.

 CATEGORY_ID : “CustomizedAbstractDomainObjectConfig”

 PROP_VALUE:” CLASS NAME of the class implementing the custom domain object ”

 PROP_ID:” CLASS NAME of the DomainObject”.

Extensible Points in Service Tier

Extensibility Guide 30

ORM Mapping

If this domain needs to be persisted in local database, then you need to create Eclipselink ORM
mapping to map fields in the domain to database table. Follow these steps:

 Create new ORM file to handle Customized Domain Object. This ORM file should contain
entries for all columns in corresponding domain object table.

 Add an entry for this ORM XML in the mapping configuration XML

 Create new table corresponds to newly created Domain Object.

Newly created ORM file will look like (CollaborationDemo.orm.xml):

Mapping configuration xml(persistence.xml):

Extensible Points in Service Tier

Extensibility Guide 31

Here Assembler should fetch customized domain object. Following example shows Assembler
calls getCustomizedDomainObject which returns customized domain object with mapping of
nameValuePairDTOArray to this customized domain Object internally.

Extensible Points in Service Tier

Extensibility Guide 32

For example:

Extensible Points in Service Tier

Extensibility Guide 33

Sequence Diagram

Configuring this custom domain object at appropriate entity level

insert into digx_me_entity_determinant_b (DOMAIN_OBJECT_NAME, DETERMINANT_TYPE,

REPRESENTED_FIELD, IS_FEATURE_ENABLED)

values ('<Fully qualified domain name>', '<Determinant Type>', '<Represented Name>', 'Y');

There are four possible determinant types as follows:

 Enterprise (ENT)

 Legal Entity (LGE)

 Market Entity (MKE)

 Business Unit (BNU)

Extensible Points in Service Tier

Extensibility Guide 34

4.5.2 Adding new Domain

The customization developer can add new domain. Below are the steps to add a new domain.

1. Create new domain class. The new domain class must extend AbstractDomainObject and
implement IPersistenceObject

2. Identify attributes and operations supported by the domain and add them to above domain
class accordingly

3. The domain object will typically have associated DTO that encapsulates same fields as in
domain. This DTO will be used in request and responses. An assembler will be used to map
fields between domain object and the DTO. Below diagram depicts this relationship.

4. Configure this new domain for appropriate entity level

insert into digx_me_entity_determinant_b (DOMAIN_OBJECT_NAME, DETERMINANT_TYPE,

REPRESENTED_FIELD, IS_FEATURE_ENABLED)

values ('<Fully qualified domain name>', '<Determinant Type>', '<Represented Name>', 'Y');

For example,

insert into digx_me_entity_determinant_b (DOMAIN_OBJECT_NAME, DETERMINANT_TYPE,

REPRESENTED_FIELD, IS_FEATURE_ENABLED)

values (' com.ofss.digx.cz.domain.payment.entity.payee.Payee', 'BNU', 'New Payee', 'Y');

Extensible Points in Service Tier

Extensibility Guide 35

4.6 Error Messages

If an API fails, It returns an error code and an error message which briefly specifies the failure

reason of the API call. Error message is returned from service to convey the cause of transaction

failure.

4.6.1 Adding Error Message

Error codes with their error messages are stored in DIGX_FW_ERROR_MESSAGES table. One
can add a new error message in the table with a unique error code.

ERROR_CODE column should contain unique value.

ERROR_MESSAGE column contains the error message which need to be added.

4.6.2 Mapping Host Error Code To OBDX Error Code

When a transaction fails in host, it provides an error code in response to the failed transaction.
This error code provided by the host could be mapped with OBDX error code to provide a user
friendly error message.

This host error code and OBDX error code mapping is done in DIGX_FW_ERR_COD_MAP table.

THIRD_PARTY_ERR_COD column holds the host error code.

LOCAL_ERR_COD column holds OBDX error code which must be present in
DIGX_FW_ERROR_MESSAGES table from where error message will be picked.

4.7 Adapter Tier

An adapter, by definition, helps the interfacing or integrating components adapt. In software it
represents a coding discipline that helps two different modules or systems to communicate with
each other and helps the consuming side adapt to any incompatibility of the invoked interface
work together. Incompatibility could be in the form of input data elements which the consumer
does not have and hence might require defaulting or the invoked interface might be a third party
interface with a different message format requiring message translation. Such functions, which do
not form part of the consumer functionality, can be implemented in the adapter layer.

4.7.1 Service Provider Interface (SPI) Approach

This section provides information about the SPI approach and how adapters are packaged and
derived at runtime based on current entity and domain under consideration.

Service Provider Interface (SPI) is an API intended to be implemented or extended by a third
party. It can be used to enable framework extension and replaceable components.

 https://docs.oracle.com/javase/tutorial/ext/basics/spi.html

 http://www.developer.com/java/article.php/3848881/Service-Provider-Interface-Creating-
Extensible-Java-Applications.htm

All the external facing adapters will be loaded using SPI.

https://docs.oracle.com/javase/tutorial/ext/basics/spi.html
http://www.developer.com/java/article.php/3848881/Service-Provider-Interface-Creating-Extensible-Java-Applications.htm
http://www.developer.com/java/article.php/3848881/Service-Provider-Interface-Creating-Extensible-Java-Applications.htm

Extensible Points in Service Tier

Extensibility Guide 36

Benefits of SPI

 No database entries are required.

 No need of adapter factories.

 Can add adapters at run-time.

 Provides the list of available implementations from which we can use the best suited one.

In this approach adapter is selected using the following call.

ExtxfaceAdapterFactory.getInstance().getAdapter(Interface.class, "method", DeterminantType);

Here,

 ‘Interface.class’ is object of interface implemented by the host (external system) adapter.

 ‘Method’ is name of method which we are intended to call of that adapter.

 DeterminantType is determinant type of the domain from which this call is made.

Sample code is as follows:

Extensible Points in Service Tier

Extensibility Guide 37

Adapter configuration:

For adapter configurations, the preference ExtxfaceAdapterPreference is used. This preference
contains Entity as key and External System (Host Name + Version) as value. So we can use
select external systems (Hosts) on the basis of entity. E.g. For entity 000 we want to use UBS
12.4 and for entity 001 use OBP 2502 then the entries will be

We can also give multiple External System separated by comma “,” for an entity, and then
adapter will get selected on the basis sequences of external systems given in value.

E.g. if the value is UBS12.4,BI1.0 then first implementation is searched in UBS 12.4 jar if is not
found then it will look in BI1.0 jar.

Adapter Registration:

After adding adapter java file in project it need to be register as provider. To register your service
provider, create a provider configuration file, which is stored in the META-INF/services directory
of the project. The name of the configuration file is the fully qualified class name of the service
provider(interface implemented by adapter), and file content which is fully qualified name of the
adapter class.

How will system derive adapter?

In the external system interface implementation project like (com.ofss.digx.extxface.ubs124.impl),
inside src/META-INF folder, we will have a MANIFEST.MF file inside which we will define the
following attributes:-

Implementation-Title: UBS

Implementation-Version: 12.4

Extensible Points in Service Tier

Extensibility Guide 38

It will tell us that the adapters are for external system UBS 12.4. While adding a new interface
implementation project, we need to create MANIFEST.MF file too, defining implementation title
and version.

While calling an adapter, we provide three parameters 1. Interface class name 2.method name
3.determinant type(for particular domain class).

Determinant type for particular domain class (digx_me_entity_determinant_b).

We match determinant type to market entity, then business unit and then legal entity.

On the first match, we derive the external systems using ExtxfaceAdapterPreference explained
above. Then we derive external systems corresponding to others(lower order ones). Thus we
have a list(list 1) of external systems in order.

For example, if 1st match is market entity. Then we will have external systems corresponding to
entries for market entity, then business unit and finally legal entity if entries are found.(in order).

If 1st match is business unit, then we will have external systems corresponding to entries for
business unit and legal entity if found(in order).

Here in the diagram above, for domain class ConfigVarBDomain, determinant_type is
BNU(business unit). lets suppose corresponding determinant value is 000.

Now, for prop_id=000, it will fetch extsystems as UBS12.3,ipm1.0.

Now for legal entity(LGE), lets suppose corresponding determinant value is 001. so it will fetch
external system as TP1.0.

So we have external system list (list 1) as {UBS12.3,imp1.0,TP1.0};

Also If none matches, we derive external system corresponding to enterprise. for eg. for
enterprise, lets suppose corresponding determinant value as 01. so external system list(list 1) will
be {UBS12.4,ipm1.0}.

How the adapters are loaded:

Now we will load all those adapter classes, that will implement the interface whcih we get as first
parameter. Now we will maintain another list or map (list 2) of external systems to adapter, that

Extensible Points in Service Tier

Extensibility Guide 39

we will resolve from all those adapter classes. (How will system know that a adapter belongs to
which external system or host?).

We will iterate through list 1(list of external systems that we got from preference entry) in order.
When we find the first matching external system in list 2, we will return the corresponding
adapter.

For example, we iterate through list 1 : {UBS12.3,imp1.0,TP1.0}. it will first find if loaded adapter
class contains adapter that belongs to external system UBS12.3. then it will retun that adapter. if
not found, it will search if any loaded adapter class belongs to imp1.0. if found it will return that
adapter. if not, then it will similarly go for TP1.0.

How to override an adapter?

One can enter (interface class name + ''."+ method name or only interface class name) in
ExtxfaceAdapterPreference against which one can specify the adapter that one want to be
overriden by.

E.g.

Insert into digx_fw_config_all_b

(PROP_ID,CATEGORY_ID,PROP_VALUE,FACTORY_SHIPPED_FLAG,PROP_COMMENTS,SUMMARY

_TEXT,CREATED_BY,CREATION_DATE,LAST_UPDATED_BY,LAST_UPDATED_DATE,OBJECT_STATU

S,OBJECT_VERSION_NUMBER,EDITABLE,CATEGORY_DESCRIPTION)

values (<Fully qualified adapter interface name>,'extxfaceadapterconfig', <Fully qualified

adapter implementation name>,'N',null,'','ofssuser', sysdate,'ofssuser', sysdate,'Y',1,'N',null);

sample:-

Insert into digx_fw_config_all_b

(PROP_ID,CATEGORY_ID,PROP_VALUE,FACTORY_SHIPPED_FLAG,PROP_COMMENTS,SUMMARY

_TEXT,CREATED_BY,CREATION_DATE,LAST_UPDATED_BY,LAST_UPDATED_DATE,OBJECT_STATU

S,OBJECT_VERSION_NUMBER,EDITABLE,CATEGORY_DESCRIPTION)

values ('com.ofss.digx.app.loan.adapter. ILoanAccountAdapter','extxfaceadapterconfig',

'com.ofss.digx.extxface.loan.impl.LoanAccountMockAdapter','N',null,'','ofssuser',

sysdate,'ofssuser', sysdate,'Y',1,'N',null);

4.7.2 Adding a custom adapter

Please follow below steps for adding a new custom adapter:

Extensible Points in Service Tier

Extensibility Guide 40

 Create a new project for customized adapter interfaces. Typically, there will be only one
customized adapter interfaces project. The name of the project should have the phrase ‘cz’
indicating that it is customized version. For example, com.ofss.digx.cz.extxface

 Please refer to the ‘Workspace Setup’ section and its ‘Adapter Interfaces’ subsection for
details.

 Add required adapter interfaces in this project

 Create another new project for customized adapter implementation classes. Typically, one
project will need to be created per entity, however if the core banking host is same for
different entities, then one project can be used for multiple entities. This decision should be
taken based on implementation scenario. If you are interfacing with any other external
system apart from core banking system (e.g. content management system), then separate
project should be created for adapters interfacing with such systems.

 Please refer to the ‘Workspace Setup’ section and its ‘Adapter Implementation’ subsection
for details.

 Name of the project should be having the phrase ‘cz’ indicating that it is part of the
customization. The name should also include external system name and version. This will
bring clarity about contents of the project by looking at the name. The same name will be
used for the JAR packaged out of this project. For example, name of the project for
customized adapters for UBS 12.4 will be com.ofss.digx.cz.extxface.ubs124.impl

 The MANIFEST.MF file within this project should have implementation title and
implementation version. The implementation title should also capture the phrase ‘CZ’ to
indicate that it is a customized adapter package.

Implementation-Title: CZUBS

Implementation-Version: 12.4

 Write required adapter implementation classes that implement appropriate adapter interface

 Create folder ‘META-INF/services’ under the ‘src’ folder.

 Create a file under this ‘services’ folder with the name as fully qualified name of the adapter
interface.

 In this file, write the fully qualified name of the adapter implementation class

 Package the adapter interface in JAR

 Package the adapter implementation project(s) in JAR(s)

 Configure the adapter implementation package in digx_fw_config_all_b. The prop_value
should have comma separated external system IDs. For example,

Insert into digx_fw_config_all_b

(PROP_ID,CATEGORY_ID,PROP_VALUE,FACTORY_SHIPPED_FLAG,PROP_COMMENTS,SUMM

ARY_TEXT,CREATED_BY,CREATION_DATE,LAST_UPDATED_BY,LAST_UPDATED_DATE,OBJEC

T_STATUS,OBJECT_VERSION_NUMBER,EDITABLE,CATEGORY_DESCRIPTION)

values ('01','extxfaceadapterconfig', 'CZUBS12.4,UBS12.4,ipm1.0','N',null,'','ofssuser',

sysdate,'ofssuser', sysdate,'Y',1,'N',null);

Extensible Points in Service Tier

Extensibility Guide 41

 Package all customized adapters in obdx.cz.extsystem.domain.ear and deploy it as a library

Customizing existing adapters (Custom Adapter)

If an added functionality or replacement functionality is required for an existing adapter or existing
method in an adapter, the customization developer has to develop a new adapter and
corresponding adapter factory and override the method in a new custom adapter class. The
custom adapter would have to override and implement the methods which need changes.

Custom Adapter Example

We take the example of LoanApplicationRequirementAdapter. For example the requirement is to
send an email alert when the requirements of a particular loan application are updated. The
OBDX application by default does not provide any integration with an SMTP/Email server. The
additional interfacing with the gateway can be done in the custom adapter. . The following steps
would have to be followed for implementation of a custom LoanApplicationRequirementAdapter.

Develop a CustomLoanApplicationRequirementAdapter and Custom
LoanApplicationRequirementAdapterFactory. As a guideline, the custom adapter should extend

Extensible Points in Service Tier

Extensibility Guide 42

the existing adapter and override the methods which needs to be replaced with new functionality.

For Example:

Custom Adapter Configuration

insert into digx_fw_config_all_b (PROP_ID, CATEGORY_ID, PROP_VALUE,

FACTORY_SHIPPED_FLAG, PROP_COMMENTS, SUMMARY_TEXT, CREATED_BY,

CREATION_DATE, LAST_UPDATED_BY, LAST_UPDATED_DATE, OBJECT_STATUS_FLAG,

OBJECT_VERSION_NUMBER)

values (‘IS_LOAN_APPLICATION_REQUIREMNT_ADAPTER_CUSTOM', ‘customadapterconfig’,

'true', 'N', 'asdf', 'asdf', 'asdf', '', 'asdf', '', 'Y', 1);

Mock Adapter

Mock adapter represents the intermediate layer required for communicating with third party host
system. operations supported by Mock adapter are create, fetch, etc. Mock Adapter is basically
responsible for generating required response from the core banking system for a given request.

Extensible Points in Service Tier

Extensibility Guide 43

Mock Adapter Example

Here it is responsible for communicating with third party host system as part of Loan requirement
for a party.

Mock Adapter Configuration

insert into digx_fw_config_all_b (PROP_ID, CATEGORY_ID, PROP_VALUE,

FACTORY_SHIPPED_FLAG, PROP_COMMENTS, SUMMARY_TEXT, CREATED_BY,

CREATION_DATE, LAST_UPDATED_BY, LAST_UPDATED_DATE, OBJECT_STATUS_FLAG,

OBJECT_VERSION_NUMBER)

values ('PARTY_COLLECTION_ADAPTER_MOCKED', 'adapterfactoryconfig', 'true', 'N', 'asdf',

'asdf', 'asdf', '', 'asdf', '', 'Y', 1);

Extensible Points in Service Tier

Extensibility Guide 44

4.7.3 Host adapter extension to populate pagination information

This extension feature helps developer to provide information regarding pagination from the host
system. This will be typically used in inquiry transactions where large number of records is
expected in response. To display such large data, pagination approach is used in user interface
to display limited number of records at a time. Based on user action the subsequent records are
fetched. The pagination information provided by this extension can be used in UI layer to display
pagination response as per developer’s requirement. The supported extension parameters are –

 more : a Boolean field to represent if any more data is available in response

 totalRecords : an Integer containing total number of records for the respective query

 startSequence : an Integer which can typically contain the sequence number of the first

record in the next pagination records list.

To use the above extension following steps need to be executed.

 The response DTO of service should implement ‘com.ofss.digx.app.dto.Ipaginable’ interface

and should override all the methods of this interface.

 Add following snippet in respective extxface adapter after calling
‘HostAdapterManager.processRequest(hostRequest)’.

The host specific adapter should return values for ‘hasMore’, ‘totalRecords’, ‘startSequence’ in
order to set the same in the Thread attribute.

 The extension parameters set in the thread attribute will be available in the REST response
as follows:

Extensible Points in Service Tier

Extensibility Guide 45

4.8 Outbound web service extensions

The outbound webservice configurations are set of properties defined to invoke services from the
host. The host is the core bank system where the business logic for core banking facilities is
written and contains the corresponding services to access that data. The existing OBDX
application has an Adapter layer which directly interacts with the host. There are extension
endpoints available for configuring a different host in the adapter layer. Following steps need to
be followed:

Using your own web service constants

The web service constants will change depending on the WSDL specification provided by the
host system. An Example WebServiceConstants file is shown below:

Extensible Points in Service Tier

Extensibility Guide 46

Web service configuration

digx_fw_config_out_ws_cfg_b. Holds the entries for the host service endpoints.

For Example:

insert into digx_fw_config_out_ws_cfg_b (SERVICE_ID, PROCESS, URL, ENDPOINT_URL,

NAMESPACE, TIME_OUT, SERVICE, STUB_CLASS, SECURITY_POLICY,

ENDPOINT_NAME, STUB_SERVICE, HTTP_BASIC_AUTH_CONNECTOR,

HTTP_BASIC_AUTH_REALM, PROXY_CLASS_NAME, IP, PORT, USERNAME, PASSWORD,

CREATED_BY, LAST_UPDATED_BY, CREATION_DATE, LAST_UPDATED_DATE,

OBJECT_STATUS, OBJECT_VERSION_NUMBER, ANONYMOUS_SECURITY_POLICY,

ANONYMOUS_SECURITY_KEY_NAME)

Extensible Points in Service Tier

Extensibility Guide 47

values ('inquireApplication', 'BaseApplicationServiceSpi',

'http://ofss310406.in.oracle.com:8001/com.ofss.fc.webservice/services/origination/BaseApplic

ationServiceSpi?wsdl', '',

'http://application.core.service.origination.appx.fc.ofss.com/BaseApplicationServiceSpi',

1200000, 'BaseApplicationServiceSpi', '', '', 'BaseApplicationServiceSpiPort',

'com.ofss.fc.appx.origination.service.core.application.baseapplicationservice

Class Diagram

Extensible Points in Service Tier

Extensibility Guide 48

Client Jar

Generate the corresponding service stubs from the WSDL specifications using The JAX-WS RI
tool. Package the generated code as a jar and include it in the Adapter implementation.

Custom Adapter

Lastly create a custom adapter to handle the changes made in the host configurations. The
custom adapter will be using the JAXWSFacotry to create instances of the desired service stubs.
The rest of the custom adapter implementation is the same as mentioned in the section 5.3

For example:

Extensible Points in Service Tier

Extensibility Guide 49

4.9 Security Customizations

OBDX comprising of several modules has to interface with various systems in an enterprise to
transfer/share data which is generated during business activity that takes place during teller
operations or processing. While managing the transactions that are within OBDX, it is needed to
consider security & identity management and the uniform way in which these services need to be
consumed by all applications in the enterprise.

OBDX provides a mechanism for creating permissions and role based authorization model that
controls access of the user to OBDX services.

4.9.1 Out of box seeding of policies

When the application is installed, access policies are seeded for Day 0 configuration and access
point definition by default.

The application is shipped with a CSV file – Day0Policy.csv, the policy data to be seeded by
default.

4.10 Taxonomy Validations

For extensions in taxonomy validations, please refer to Oracle Banking Digital Experience
Taxonomy Configuration Guide.pdf

4.11 Miscellaneous

This section lists some other features in OBDX platform that can be extended

4.11.1 Task Configurations

Task Registration:

Every new service to be integrated as a part of OBDX needs to provide a task code. This task
code is required while integrating the
service with various infrastructural aspects applicable to the service. Few examples of
infrastructural aspects or cross cutting
concerns provided out of the box with OBDX are:

 Limits

 Approvals

 Two Factor Authentication

 Transaction Blackout

 Working Window

 Account Relationship

Guidelines for formulating a task code are as follows:

Extensible Points in Service Tier

Extensibility Guide 50

A task code should ideally comprise of 3 parts:

1. Module Name : The first 2 alphabets representing the module to which the service in
question belongs. eg TD represents Term Deposits
module.

2. Task Type(type of service) : OBDX supports the following 6 types of services.

a. FINANCIAL_TRANSACTION(F) : Any transaction as a result of which there is a change
in the status of the finances of accounts of
the participating parties. In general any transaction that involves monetary transfer
between parties via their accounts. Few
examples include Self transfer, New deposit(Open term deposit), Bill payment etc.

b. NONFINANCIAL_TRANSACTION(N) : Any transaction that pertains to an account but
there is no monetary payment or transfer involved
in it. For example Cheque book request.

c. INQUIRY(I) : Any read only transaction supported in OBDX that does not manipulate any
business domain of the financial
institution. For example list debit cards, read loan repayment details, fetch term deposit
penalties etc.

d. ADMINISTRATION(A) : Transactions performed by bank admins and corporate admins
for a party come under this category. Few examples of
such transactions include limit definition, limit package definition, user creation, rule
creation and various others.

e. MAINTENANCE(M) : Maintenances done by a party for itself fall under this category.
Maintenance transactions performed by a
non admin user which does not involve any account or monetary transaction comprise of
this transaction type. Example add biller.

f. COMMON(C) : Common transactions include transactions which do not fall under any of
the above mentioned categorization. Example login.
So 1 alphbet F,N,I,A,M or C for each of the above mentioned task types respectively
forms the second part of the task code.

3. Abbreviation for service name : A 3 to 10 lettered abbreviation for the service name.
Example OTD for Open Term Deposit.
All the above mentioned 3 parts are delimited by an underscore character.
Example : TD_F_OTD where TD represents module name. F represents that its a financial
transaction i.e. task type and OTD is the abbreviated
form of the transaction(service) name.

Task Aspects:

An ‘aspect’ of a task is a behavior or feature supported by the task. OBDX framework defines a
set of aspects that can be supported by a task in the system. These aspects need to be
configured in table DIGX_CM_TASK_ASPECTS. So if a task supports given aspect, then only its
entry should be made in this table. If for any task, entry does not exist in this table for given
aspect, then system treats it as that aspect is not supported by the task.

Additionally an aspect can be temporarily disabled using the ‘ENABLED’ column of this table. If
the ‘ENABLED’ value is set as ‘N’, then system will treat it as this aspect is not supported by the

Extensible Points in Service Tier

Extensibility Guide 51

task. Note that if a task is never going to support an aspect, then its entry should not be there in
DIGX_CM_TASK_ASPECTS table. The ‘ENABLED’=’N’ option for disabling aspect should be
used only when the task generally supports the aspect but it needs to be disabled for small
duration.

Note that just having an entry in this table does not imply that the feature will be enabled for the
task. The entry in this table only tells that system that the task supports this feature. Individual
feature might need further configurations for them to work properly.

List of aspects supported by OBDX framework is listed below. Please note that aspects are not
extensible – in other words it is not possible to add new aspects as part of customization.

Aspect Description

grace-period Indicates that the task supports grace period. Grace period is an additional

period offered by Approval framework for approving a transaction

Note: Grace Period will be applicable for the transactions with due
date only.

ereceipt Indicates that the task supports generation of e-receipts

audit Indicates that the task supports audit logging

2fa Indicates that the task supports two factor authentication

working-

window

Indicates that the task supports working window

approval Indicates that the task supports approval

blackout Indicates that the task supports blackout

limit Indicates that the task supports limit

Account

Relationship

Indicates that the task supports account relationship check

Steps to register a task with OBDX:

The task code needs to be configured in the database table DIGX_CM_TASK. For example if we
consider Open Term Deposit then the below
query fulfills the requirement mentioned in this step.

Insert into DIGX_CM_TASK (ID, NAME, PARENT_ID, EXECUTABLE, TASK_TYPE, MODULE_TYPE,

CREATED_BY,

CREATION_DATE, LAST_UPDATED_BY, LAST_UPDATED_DATE, OBJECT_STATUS,

Extensible Points in Service Tier

Extensibility Guide 52

OBJECT_VERSION_NUMBER) values ('TD_F_OTD', 'New Deposit', 'TD_F', 'Y',

'FINANCIAL_TRANSACTION', 'TD', 'ofssuser', sysdate, 'ofssuser', sysdate, null, 1);

As evident from the above query example Tasks have a hierarchy. Every task might have a
parent task denoted by the task code value held
by the PARENT_ID column of DIGX_CM_TASK. In most of the cases its a 3 level hierarchy.

 Leaf level tasks to which services are mapped at the lowest level

 Task representing the module to which the service belongs at the mid level

 Task representing the task type at the root level

For instance consider the task code AP_N_CUG which represents the Usergroup creation service
under module approvals(AP). So the
PARENT_ID column of task AP_N_CUG(leaf level task) has task code as AP(mid level task). If
we look at the entry for task code
AP(mid level task) then the value in the PARENT_ID column of DIGX_CM_TASK has MT(root
level task) which is the task code representing
task type ADMINISTRATION. The leaf level task has 'Y' as the value in its EXECUTABLE
column. The mid level and root level tasks have 'N' as the value in its EXECUTABLE column.

Step 2 – Configure aspects supported by the task. For example, if above task supports blackout,
approval and working window, then following entries should be made.

Insert into DIGX_CM_TASK_ASPECTS (TASK_ID,ASPECT,ENABLED)

values ('TD_F_OTD','approval','Y');

Insert into DIGX_CM_TASK_ASPECTS (TASK_ID,ASPECT,ENABLED)

values ('TD_F_OTD','working-window','Y');

Insert into DIGX_CM_TASK_ASPECTS (TASK_ID,ASPECT,ENABLED)

values ('TD_F_OTD','blackout','Y');

Step 3 - Register the newly created service against this task.
For this step firstly, you need to get the service id for your service(transaction). Service id is the
fully qualified name of the
class appended by the dot character (.) and the method name. For example taking open term
deposit into consideration, the business
logic for the service is encapsulated in the method named create of the service
class com.ofss.digx.app.td.service.account.core.TermDeposit.
Hence the service id is derived as
: com.ofss.digx.app.td.service.account.core.TermDeposit.create
Secondly the below query fulfills the requirement mentioned in this step.

http://com.ofss.digx.app.td/
http://com.ofss.digx.app.td/

Extensible Points in Service Tier

Extensibility Guide 53

insert into DIGX_CM_RESOURCE_TASK_REL (ID, RESOURCE_NAME, TASK_ID,
CREATED_BY, CREATION_DATE, LAST_UPDATED_BY, LAST_UPDATED_DATE,
OBJECT_STATUS, OBJECT_VERSION_NUMBER) values ('1',
'com.ofss.digx.app.td.service.account.core.TermDeposit.create', 'TD_F_OTD', 'ofssuser',
sysdate, 'ofssuser', sysdate, null,1);

The aforesaid procedure enrolls your newly created service as a task in OBDX.

Limit Configuration

The below procedure describes the steps required to enable Limits for a newly developed
service.

A prerequisite to this configuration is that this newly developed service should be registered as a
task in OBDX. Refer “Task Registration” section for further details. The types of Limits
supported by the system are:

 Periodic Limit(Cumulative) : Limits that get reset after the expiration of a period. Example
Daily-limits.

 Duration Limit(Cooling Period) : Limits that get applicable after the occurrence of an event,
for instance payee creation, and
then are applicable for the specified duration after commencement of the event.

 Transaction Limit : Limits applicable to each invocation of a transaction. Holds minimum and
maximum amount that can be transacted in a single transaction invocation.

Limits are applicable to targets. The types of targets supported by OBDX are Task and
Payee.

 Task : Any service developed as a part of OBDX and registered as a task as mentioned in
earlier sections

 Payee : A payee resource created via Payee creation transaction in OBDX.

To enable limits for a service, rather for a task mapped to the service to be precise, we
need to follow the below mentioned steps:

 Ensure that the ‘limit’ aspect is configured in DIGX_CM_TASK_ASPECTS table and
ENABLED column is updated as 'Y' for your task id.

 Step 2. Register taskEvaluatorFactory for your task code.
This needs an insert in DIGX_FW_CONFIG_ALL_B table under the category_id
'taskEvaluatorFactories' as shown below

Insert into DIGX_FW_CONFIG_ALL_B (PROP_ID, CATEGORY_ID, PROP_VALUE,

FACTORY_SHIPPED_FLAG, PROP_COMMENTS, SUMMARY_TEXT, CREATED_BY,

CREATION_DATE, LAST_UPDATED_BY, LAST_UPDATED_DATE, OBJECT_STATUS,

OBJECT_VERSION_NUMBER) values (<<taskcode>>, 'taskEvaluatorFactories',

'com.ofss.digx.framework.task.evaluator.DefaultTaskEvaluatorFactory', 'N',

null, 'Task Evaluator Factory for Mixed FT', 'ofssuser', sysdate, 'ofssuser', sysdate,

'Y', 1);

4. Code a LimitDataEvaluator for the task. LimitDataEvaluator is a class that extends
AbstractLimitDataEvaluator class present in com.ofss.digx.finlimit.core.jar. This class is an
abstract class which has only 1 abstract method having signature as shown below:

http://com.ofss.digx.app.td/

Extensible Points in Service Tier

Extensibility Guide 54

/**

 * provide {@link AbstractAspectData} of currently executing task.

 *

 * @param serviceInputs

 * the service inputs

 * @return {@link AbstractAspectData} required for limit utilization and validation

 * @throws Exception

 */

public T evaluate(List<Object> serviceParameters) throws Exception

This method receives a List<Object> as an input. This list has all the arguments that were passed
to the newly coded service for which limits needs to be enabled. For instance, consider the
service to open a termed deposit. Signature of the service is as
shown below.

public TermDepositAccountResponseDTO create(SessionContext sessionContext,
TermDepositAccountDTO termDepositAccountDTO) throws Exception

In this case when the LimitDataEvaluator coded for open term deposit task i.e. TD_F_OTD is
invoked by the OBDX framework, the serviceInputs argument of evaluate method will contain 2
objects in the list namely SessionContext and TermDepositAccountDTO. The return type of
evaluate method is LimitData. The state of a LimitData object comprises of three variables:

 CurrencyAmount : an Object of type CurrencyAmount which represents the monetary
amount involved in the ongoing transaction along with the currency in the transfer or payment
is made.

 payee : An object of type PayeeDTO. Needs to be populated in case a payee is involved in
the transaction.

 limitTypesToBeValidated : A list of LimitTypes. For all unexceptional practical purposes this

needs to be populated as shown below:

limitTypesToBeValidated = new
ArrayList<LimitType>(Arrays.asList(LimitType.PERIODIC,LimitType.DURATION,LimitType.TRANSACTION)
);

These 3 fields in case applicable needs to be derived from the argument serviceInputs and
populated in the returned LimitData
object.

 Register the LimitDataEvaluator coded in Step 3.

This needs an insert in DIGX_FW_CONFIG_ALL_B table under the category_id
'limitDataEvaluator' as shown below

Insert into DIGX_FW_CONFIG_ALL_B (PROP_ID, CATEGORY_ID,PROP_VALUE,
FACTORY_SHIPPED_FLAG, PROP_COMMENTS, SUMMARY_TEXT, CREATED_BY, CREATION_DATE,
LAST_UPDATED_BY, LAST_UPDATED_DATE, OBJECT_STATUS, OBJECT_VERSION_NUMBER)
values (<<task code>>, 'limitDataEvaluator', <<limitDataEvaluator>>, 'N',

Extensible Points in Service Tier

Extensibility Guide 55

'Limit data evaluator for <<service name>> service', null, 'ofssuser', sysdate, 'ofssuser',

sysdate, 'A', 1);

In the above query <<task code>> is the task code for the service, <limitDataEvaluator>> is the
fully qualified name of the class coded in Step 3. <<service name>> is a descriptive name for the
service.

 Step 5. Code a TargetEvaluator for your task.

Note: This step is needed only if your task requires limits involving Payees. Example Duration Limits
and payee limits.

Payee limits are Periodic and Transactional limits applied on a Payee.

TargetEvaluator is a class that implements ITargetEvaluator interface. ITargetEvaluator is a
functional interface that has only 1 method as shown below :

/**
* Evaluates the Target details for the given evaluated task code and service inputs in the form of
* {@link TargetDTO}.
*
* @param evaluatedTaskCode
* the given evaluated task code
* @param serviceInputs
* inputs of the service using this evaluator
* @return target details of the target for this task code and service inputs in the form of {@link TargetDTO}.
* @throws Exception
* exception while evaluating {@link TargetDTO}
*/
public TargetDTO evaluate(String evaluatedTaskCode, List<Object> serviceInputs) throws Exception;

This method accepts the task code and serviceInputs in case something needs to be derived from
the arguments passed to the
service.

It returns a TargetDTO. TargetDTO has an id, name, value and TargetTypeDTO. TargetType tells
whether the target is of type task or payee. If the TargetType is TASK then the variable value of
TargetDTO holds the task code for the service.

If the TargetType is PAYEE then the variable value of TargetDTO holds the payeeId of the payee
involved in the service.

As this step is required only for limits pertaining to payees so TargetType will be PAYEE and
targetDTO's value will be payeeId.

Register the TargetEvaluator coded in Step 5.

Note: This step is needed only if your task requires limits involving Payees. Example Duration Limits
and payee limts.

Extensible Points in Service Tier

Extensibility Guide 56

Payee limits are Periodic and Transactional limits applied on a Payee.

This needs an insert in DIGX_FL_TARGET_EVALUATOR table as shown below:

Insert into DIGX_FL_TARGET_EVALUATOR (TASK_CODE, TARGET_TYPE, EVALUATOR,
PROP_COMMENTS, SUMMARY_TEXT, CREATED_BY, CREATION_DATE, LAST_UPDATED_BY,
LAST_UPDATED_DATE, OBJECT_STATUS, OBJECT_VERSION_NUMBER) values (<<task code>>,
'PAYEE', <<TargetEvaluator>>, null,
'target evaluator for <<service name>> service', 'ofssuser', sysdate, 'ofssuser', sysdate, 'Y',

1);

In the above query <<task code>> is the task code for the service, <<TargetEvaluator>> is the fully
qualified name of the
class coded in Step 5. <<service name>> is a descriptive name for the service.

 The aforesaid procedure enables limits for a task in OBDX.

Approval Configuration

The below procedure describes the steps required to enable Approvals for a newly developed
service.

A prequisite to this configuration is that this newly developed service should be registered as a task
in OBDX. Refer “Task Registration” section for further details.

To enable approvals for a service, rather for a task mapped to the service to be precise, we need to
follow the below mentioned steps:

 Ensure that the ‘approval’ aspect is configured in DIGX_CM_TASK_ASPECTS table and
ENABLED column is set to ‘Y’ for your task id.

 Note : If the newly created task is of type ADMINISTRATION and the maintenance is not
specific to a party then this step is not
required. Examples of such transaction are 2 Factor Authentication maintenance, limit
maintenance and limit package maintenance.
Tasks of type ADMINISTRATION which are specific to a party like Rule management tasks,
workflow management tasks etc require this step.
Tasks of type
FINANCIAL_TRANSACTION,NONFINANCIAL_TRANSACTION,MAINTENANCE,INQUIRY
and COMMON require this step.

Code an approval assembler for the new task. An approval assembler is a class that
extends AbstractApprovalAssembler.

There are 4 methods in abstract approval assembler out of which the one with the below signature:

public abstract T toDomainObject(D requestDTO) throws Exception;

will encapsulate the logic required to populate Transaction domain which is used by approvals
framework.

Rest of the methods need to be overridden with empty or null implementations.
As evident from the signature quoted above this method accepts a requestDTO(an object that IS A
DataTransferObject) and a transaction(an object that IS A Transaction).
requestDTO is the same DataTransferObject that was passed to your newly created service. For

Extensible Points in Service Tier

Extensibility Guide 57

instance consider the service to open a termed deposit. Signature of the service is as shown below.

public TermDepositAccountResponseDTO create(SessionContext sessionContext,
TermDepositAccountDTO termDepositAccountDTO) throws Exception

In this case when the ApprovalAssembler coded for open term deposit task i.e. TD_F_OTD is
invoked by the OBDX framework, the requestDTO argument of toDomainObject method will be the
same as termDepositAccountDTO.

This method populates the transaction object on the basis of the requestDTO and returns the
transaction domain. The guidelines
to override this method are as follows:-

 Instantiation:
The transaction object passed will be null and needs to be instantiated. If the task type of the
newly created service is FINANCIAL_TRANSACTION then the transaction needs to be
instantiated as an object of AmountAccountTransaction.

 transaction = new AmountAccountTransaction();

If the task type of the newly created service is NONFINANCIAL_TRANSACTION then the
transaction needs to be instantiated as an
object of AccountTransaction.

 transaction = new AccountTransaction();

If the task type of the newly created service is MAINTENANCE then the transaction needs to
be instantiated as an object of PartyTransaction.

transaction = new PartyTransaction();

If the task is of type ADMINISTRATION and the maintenance is specific to a party then the
transaction needs to be instantiated as an object of PartyTransaction.

 transaction = new PartyTransaction();

If the task is of type ADMINISTRATION and the maintenance is not specific to a party then
the transaction needs to be instantiated
as an object of Transaction.

 transaction = new Transaction();

 Call to AbstractApprovalAssembler :

Extensible Points in Service Tier

Extensibility Guide 58

Call
transaction = super.toDomainObject(requestDTO, transaction);

This populates the generic state of transaction domain which does not change with the task
for which approvals is being configured.
c. Populate the state of the transaction domain which is specific to the task for which
approvals is being configured. Cast the
requestDTO to the type being accepted by the service. For example cast it to
TermDepositAccountDTO as per the aforesaid example.
Use this DTO to populate the service specific state of the transaction domain like amount,
account etc.

 Step 3. Register an approval assembler for your service or task.

To register an approval assembler for your service an entry needs to be made in the
database table DIGX_FW_CONFIG_ALL_B with
the value of column CATEGORY_ID as 'approval_assembler'.

If the newly created task is of type ADMINISTRATION and the maintenance is not specific to
a party then the approval assembler to be registered against your service is
om.ofss.digx.framework.domain.transaction.assembler.GenericDTOTransactionAssembler
2 Factor Authentication Maintenance is a fine example of such transactions. The service id
for this transaction is com.ofss.digx.app.security.service.authentication.maintenance.
AuthenticationMaintenance.

create
The below query fulfills the requirement of this step:

Insert into DIGX_FW_CONFIG_ALL_B
(PROP_ID,
CATEGORY_ID,
PROP_VALUE,
FACTORY_SHIPPED_FLAG,
PROP_COMMENTS,
SUMMARY_TEXT,
CREATED_BY,
CREATION_DATE,
LAST_UPDATED_BY,
LAST_UPDATED_DATE,
OBJECT_STATUS,
OBJECT_VERSION_NUMBER)
values
('com.ofss.digx.app.security.service.authentication.maintenance.AuthenticationMaintenance.create',
'approval_assembler',
'com.ofss.digx.framework.domain.transaction.assembler.GenericDTOTransactionAssembler',
'N',
'assembler class for conversion from UserSegmentTFAMaintenanceDTO to Transaction domain',
'assembler class for conversion from UserSegmentTFAMaintenanceDTO to Transaction domain',
'ofssuser',
sysdate,
'ofssuser',
sysdate,
'A',
1);

In all other cases where you have implemented a custom approval assembler as per the

Extensible Points in Service Tier

Extensibility Guide 59

guidelines in step 2, the fully qualified
class name of that approval assembler will be registered against your service. The below
query fulfills the requirement of
this step:

Insert into DIGX_FW_CONFIG_ALL_B
(PROP_ID,
CATEGORY_ID,
PROP_VALUE,
FACTORY_SHIPPED_FLAG,
PROP_COMMENTS,
SUMMARY_TEXT,
CREATED_BY,
CREATION_DATE,
LAST_UPDATED_BY,
LAST_UPDATED_DATE,
OBJECT_STATUS,
OBJECT_VERSION_NUMBER)
values
(<<service id>>,
'approval_assembler',
<<ApprovalAssembler>>,
'N',
'assembler class for conversion from DataTransferObject to Transaction domain',
'assembler class for conversion from DataTransferObject to Transaction domain',
'ofssuser',
sysdate,
'ofssuser',
sysdate,
'A',

1);

In the above query <<service id>> is the fully qualified name of the class appended by the
dot character (.) and the method
name. <<ApprovalAssembler>> denotes the fully qualified class name of the approval
assembler coded in Step 2.

 The aforesaid procedure enables approvals for a task in OBDX.

Account Relationship

Using this aspect, one can control accounts for a transaction.

1. Account Number List Filtration

To filter the account list based on Account Relationship configuration, task code should be
provided in REST call in following manner

../digx/v1/accounts/demandDeposit?taskCode=TD_F_OTD

Extensible Points in Service Tier

Extensibility Guide 60

Above REST will return only allowed accounts for ‘New Deposit’ transaction.

2. Account Number Validation

Here we validate account number(s) using Account Relationship Configuration.

Following changes need to be done to achieve this

Evaluator class – If ‘Account Relationship Check’ is enabled for a transaction, then application
looks for registered evaluator class. This class is used to identify account number(s) from
incoming request object and converts it into input which is required for account relationship
checking.

Evaluator class should implement interface
‘com.ofss.digx.app.accountrelationship.evaluator.mapping.IAccountRelationshipDataEvaluator’

Example - ‘com.ofss.digx.app.td.evaluator.accountrelationship.TDAccountRelationshipEvaluator’
is an evaluator class which is used for ‘New Deposit’ transaction.

Inside ‘evaluate’ method of this class, account number from request object
‘com.ofss.digx.app.td.dto.account.TermDepositAccountDTO’ is being get converted into list of
‘com.ofss.digx.app.party.dto.relation.account.PartyToAccountRelationshipDTO’.

Following database entry has been made to register evaluator class
‘com.ofss.digx.app.td.evaluator.accountrelationship.TDAccountRelationshipEvaluator’ with task
code ‘TD_F_OTD’ of ‘New Deposit’ transaction.

Insert into DIGX_FW_CONFIG_ALL_B

(PROP_ID, CATEGORY_ID, PROP_VALUE, FACTORY_SHIPPED_FLAG,
PROP_COMMENTS, SUMMARY_TEXT, CREATED_BY, CREATION_DATE,
LAST_UPDATED_BY, LAST_UPDATED_DATE, OBJECT_STATUS,
OBJECT_VERSION_NUMBER, EDITABLE,

CATEGORY_DESCRIPTION) values

 ('TD_F_OTD', 'accountRelationshipEvaluator',
'com.ofss.digx.app.td.evaluator.accountrelationship.TDAccountRelationshipEvaluator',

 'N', 'Account Relationship evaluator for TD', null, 'ofssuser', sysdate, 'ofssuser',

 sysdate, 'A', 1, 'N', null);

Home

Extensible Points in Service Tier

Extensibility Guide 61

5. Architecture of GUI Tier

Below diagram shows structure of the UI artifacts and some of the important artifacts are
explained subsequently.

Home

Extensible Points in Service Tier

Extensibility Guide 62

6. Extensible Points in GUI Tier

This article provide the guidelines for UI Extensibility.

6.1 Theme and Brand

 CSS Custom Properties are available for modifications. You can change the variables by
creating a new CSS file which has updated value of CSS custom properties. Make sure that
file is imported after the main.css file.. Same functionality you can achieve by Branding. It is
recommended that implementer should use Branding functionality.

 We are not allowing adding new styles in the core UI.

 For the Images you are free to do modifications.

6.2 Component Extensibility

 Framework Elements like (header,dashboard, menu etc) are not available for the
modification and customization.

 All components available under component folder are available for the extension.

6.2.1 Adding New and Overriding Existing Components

If you want to add new component place that component in
<CHANNEL_ROOT_PATH>/extensions/components. It follow the same structure which is
present in components folder. Same thing is applicable for the existing components. If you want
to change anything then copy that component and place it extensions/components folder with the
same structure.

If resource bundle needs to change for that component place related resource bundle in
<CHANNEL_ROOT_PATH>/extensions/resources location. Structure remain same for
<CHANNEL_ROOT_PATH>/resources and <CHANNEL_ROOT_PATH>/extensions/resources
folder. Make sure that you updated the resource bundle path in your component.

If any component is present in <CHANNEL_ROOT_PATH>/extensions/components will take
precedence over the <CHANNEL_ROOT_PATH>/components. For it we maintaining the list of
components available in extensions in <CHANNEL_ROOT_PATH>/extensions/extension.json
which is to be entered manually. For example:

Sample JSON for extension.json

{

"components": [<component1>,<component2>].

“partials” : [“partial1.html”,”partial2.html”]

Extensible Points in Service Tier

Extensibility Guide 63

}

In the Same manner you can override the partial templates.

Note: Out of the box we are providing extension for Internal Account Input Component (inernal-
account-input). This extension need to be implemented in scenario where the bank account
number do not have branch code prefixed in the account.

6.2.2 Add / Modify Validations

All the validation available in the application are maintained
in <CHANNEL_ROOT_PATH>/framework/js/base-models/validations/obdx-
locale.js. Implementer can override and add new validations in the application without changing
this file. An extension hook is given at :

For OBDX 18.1 at <CHANNEL_ROOT_PATH>/extensions/validations/obdx-locale.js

From OBDX 18.2 onwards <CHANNEL_ROOT_PATH>extensions\override\obdx-locale.js

In this file Implementer can add or override validations.

For Example: If you need to change the pattern which validate Mobile Number. Add updated
pattern in this file as below.

Extensible Points in Service Tier

Extensibility Guide 64

6.3 Calling custom REST service

In implementation if any new services are written by implementer it has been directed to change
the context root for new REST to digx/cz/v1. For supporting it from the UI, implementer has to
pass cz/v1 in the version field of the AJAX setting from his model.

For example see the snippet below:

Home

Extensible Points in Service Tier

Extensibility Guide 65

7. Libraries

OBDX has bundled its platform features and capabilities in various libraries based on logical
separation of features. This section provides a list of such libraries along with their purpose

7.1 OBDX Libraries

This section provides information about various OBDX libraries that are provided out of the box.

7.1.1 Core/Framework Libraries

Provide infrastructure features of OBDX platform. These libraries are packaged in the enterprise
application obdx.app.framework.ear

Library Description

com.ofss.digx.infra Provides basic infrastructure classes.

com.ofss.digx.infra.audit Provides basic infrastructure classes for

audit.

com.ofss.digx.infra.crypto Provides cryptography functions such as

hash generation, public private key

generation and symmetric cryptography

provider.

com.ofss.digx.infra.crypto.impl.jar Provides default implementations of

cryptography functions such as hash

generation, public private key generation

and symmetric cryptography provider.

com.ofss.digx.framework.domain Provides base classes for entities,

assemblers, repositories etc.

com.ofss.digx.framework.rest Provides classes for calling host REST

services.

com.ofss.digx.framework.adapter Provides adapter interfaces for cross-

domain invocation required for the

framework.

com.ofss.digx.appx.core.rest Provides infrastructure classes for OBDX

REST services

Extensible Points in Service Tier

Extensibility Guide 66

com.ofss.digx.datatype Provides complex data types used in OBDX

application

com.ofss.digx.core.enumeration Provides enumerations required for the

core framework of the application.

com.ofss.digx.app.groovy.whitelist ??

com.ofss.digx.appcore Provides base classes for application

services, Interaction classes etc.

com.ofss.digx.security.core Provides two factor authentication related

core classes.

com.ofss.digx.appcore.dto Provides DTOs used in infrastructure

services

7.1.2 Common Librarie

Provide common libraries used across all modules of the application. These libraries are
packaged in the enterprise application obdx.app.domain.ear

Library Description

com.ofss.digx.accountrelationship.core Provides classes for account relationship

evaluators.

com.ofss.digx.adapter Provides interfaces for cross-domain adapters.

com.ofss.digx.app.xface Provides all request, response or plain DTOs used

in services

com.ofss.digx.cloud.extension Provides extension executers for groovy.

com.ofss.digx.common Provides all constants and utilities to be used

across the application.

com.ofss.digx.enumeration Provides all enumerations.

com.ofss.digx.extxface Provides adapters for interaction with external

applications.

Extensible Points in Service Tier

Extensibility Guide 67

com.ofss.digx.finlimit.core Provides core classes for financial limits

processing

com.ofss.digx.security.provider Provides core classes for two factor

authentication.

7.1.3 Modules

Provide functional module available in the application. These libraries are packaged in the
enterprise application obdx.app.domain.ear

Library Description

com.ofss.digx.module.access

com.ofss.digx.module.account

com.ofss.digx.module.alerts

com.ofss.digx.module.approval

com.ofss.digx.module.audit

com.ofss.digx.module.brand

com.ofss.digx.module.budget

com.ofss.digx.module.card

com.ofss.digx.module.chatbot

com.ofss.digx.module.collaboration

com.ofss.digx.module.common

com.ofss.digx.module.config

com.ofss.digx.module.content

com.ofss.digx.module.dda

com.ofss.digx.module.extension

Extensible Points in Service Tier

Extensibility Guide 68

com.ofss.digx.module.ebpp

com.ofss.digx.module.forexdeal

com.ofss.digx.module.fileupload

com.ofss.digx.module.finlimit

com.ofss.digx.module.goal

com.ofss.digx.module.loan

com.ofss.digx.module.location

com.ofss.digx.module.me

com.ofss.digx.module.mobile

com.ofss.digx.module.origination

com.ofss.digx.module.party

com.ofss.digx.module.payment

com.ofss.digx.module.pm

com.ofss.digx.module.report

com.ofss.digx.module.security

com.ofss.digx.module.sms

com.ofss.digx.module.spendanalysis

com.ofss.digx.module.sr

com.ofss.digx.module.td

com.ofss.digx.module.tradefinance

com.ofss.digx.module.user

com.ofss.digx.module.wallet

Extensible Points in Service Tier

Extensibility Guide 69

7.1.4 Endpoints

Provide functional module available in the application. These libraries are packaged in the
enterprise application obdx.app.domain.ear

Library Description

com.ofss.digx.appx.service.rest Provides REST endpoint classes for all modules

7.1.5 External System Adapters

These are packaged into obdx.extsystem.domain.ear

Library Description

com.ofss.digx.extxface Provides all external interfaces

com.ofss.digx.extxface.sms.dbAuthenticator Provides all the implementations for OBDX

database authenticator

com.ofss.digx.extxface.<Host Name>.impl Provides adapter implementations of the

external interfaces for particular host

com.ofss.<Host Name>.soap.client Provides stubs used for communicating with

host

Home

Workspace Setup

Extensibility Guide 70

8. Workspace Setup

In order to implement the DIGX architecture, we will create separate projects for different
framework components in Eclipse (with JDK 8)

Why separate projects? : Ensures high extensibility and loose coupling between different
components of the system. Also, in later stages, sustenance becomes easier and it helps
developers also to effectively maintain the ever-growing code.

Moving on, let’s create the following projects as shown in the Figure 2:

Figure 2 Project structure

8.1 Basic Setup

Create a new workspace in Eclipse and launch that workspace.

Go to Window  Preferences. Go to Java  Build Path  Classpath Variables. Set following
variables there

Classpath Variable Description

DIGX_LIB Refers to the base location of OBDX libraries

OBP_LIB Refers to the base location of OBP libraries

EXT_LIB Refers to the base location of external libraries

The screen will look like this.

Workspace Setup

Extensibility Guide 71

8.2 DTO (xface) project

Create a Java Project with the project name ‘com.ofss.digx.cz.app.xface’. Now create a
package in that project with the name ‘com.ofss.digx.cz.app.<module_name>.dto’ .

This package consists of Data Transfer Object classes, also referred as Plain Old Java Objects or
POJO. All the request as well as response DTO classes are created under this project. The
Request DTO classes in this project extend DataTransferObject present in OBP libraries
whereas the Response DTO classes extend BaseResponseObject.

Project dependencies for xface project:

Not needed.

Classpath variables:

Extend the following classpath variables to the jars found in OBDX_Installer:

Classpath
name

Jars to extend

DIGX_LIB com.ofss.digx.app.xface.jar

com.ofss.digx.appcore.dto.jar

Workspace Setup

Extensibility Guide 72

com.ofss.digx.infra.jar

OBP_LIB com.ofss.fc.appcore.dto.jar

com.ofss.fc.infra.jar

8.3 REST endpoint

Create a Java Project (Note: No need to create Dynamic Web Project from 18.1 onwards) with
the project name ‘com.ofss.digx.cz.appx.service.rest’. Now create a package in that project
with the name ‘com.ofss.digx.cz.appx.<module_name>’ .

This package contains the endpoint class to take requests and send responses back to
server. The REST classes usually contain JAX-RS annotations and URIs which help them to
locate themselves whenever a request is made through a REST call.

All the classes in this project extend AbstractRESTApplication and also have a default interface
class prefixed with ‘I’ before the name of the corresponding REST implementation class. For
instance, Account REST class will have IAccount Interface class in the same the package of this
project.

Project dependencies for REST project:

Add the following projects (to be created later) in the Java build path of this project:

com.ofss.digx.cz.app.xface, com.ofss.digx.cz.module.<module_name>

Classpath variables:

Create the following classpath variables (left column) and extend them to the jars (names on the
right side column). Note that these libraries can be found in the OBDX Installer folder and the
exact location of each jar can be found in the section 8 (last part) of this document.

Classpath
name

Jars to extend

DIGX_LIB com.ofss.digx.appcore.jar

com.ofss.digx.appcore.dto.jar

com.ofss.digx.common.jar

com.ofss.digx.datatype.jar

com.ofss.digx.enumeration.jar

com.ofss.digx.infra.audit.jar

com.ofss.digx.infra.jar

com.ofss.digx.infra.crypto.jar

com.ofss.digx.app.xface.jar

com.ofss.digx.appx.core.rest.jar

com.ofss.digx.module.<Module Name>.jar (Based on which module

Workspace Setup

Extensibility Guide 73

service you are going to consume)

EXT_LIB All jersey2 libraries found in OBDX installer folder

OBP_LIB com.ofss.fc.appcore.dto.jar

com.ofss.fc.appcore.jar

com.ofss.fc.enumeration.jar

com.ofss.fc.infra.jar

8.4 Module

Create a new Java project with this name. This project contains the vital business logic, extension
points, constraints, security checks like authorization and access control. The following packages
need to be created inside this project:

1. com.ofss.digx.cz.app.<module_name>.service : Add the Service Interface and
Implementation class in this package. The name of Service class should be same as the
name of the REST class created in the REST project. For instance, this package will have
classes named IAccount.java and Account.java which are same as the REST class name
for Account. This service class extends AbstractApplication of the DIGX framework.

2. com.ofss.digx.cz.app.<module_name>.service.ext: Contains classes for extensions and
executors. Each Service classes will have their own extension points. Refer mock
workspace for more detail.

3. com.ofss.digx.cz.app.<module_name>.assembler: Create <module_name>Assembler
class inside this package. All Assembler classes extends AbstractAssembler .

4. com.ofss.digx.cz.domain.<module_name>.entity: This package should include Entity
class for the module. The name of entity class to be created should be same as REST as
well as Service class names. For instance, it will have Account.java entity class for Account
service and REST classes. Also known as Domain classes, they extend
AbstractDomainObject taken from OBP libraries.

5. com.ofss.digx.cz.domain.<module_name>.entity.assembler: Add a domain assembler
class with the name <module_name>DomainAssembler in this package.

6. com.ofss.digx.cz.domain.<module_name>.entity.policy: Add the business policy
classes in this package to ensure the validation of business constraints added in these
classes. Refer workspace attached with this document for more detail. Classes in this
project are again one of the must-haves as far as enforcement of any system validation is
concerned.

7. com.ofss.digx.cz.domain.<module_name>.entity.repository: Contains repository class
(<module_name>Repository.java) which invokes Repository adapter classes described in
the next point. This class extends AbstractDomainObjectRepository of DIGX framework.

8. com.ofss.digx.cz.domain.account.entity.repository.adapter: Add repository adapter
interfaces, Local and Remote Repository Adapter classes in this project. If you are writing
for the Account service, the naming convention of these classes should be
I<module_name>RepositoryAdapter, Local<module_name>RepositoryAdapter,
Remote<module_name>RepositoryAdapter respectively.

Workspace Setup

Extensibility Guide 74

With this ends the package structure for service classes. The implementation of this project takes
maximum time and involves majority of the DIGX service layer handling. It is therefore a very
crucial part to look for while developing a REST API in DIGX.

Project dependencies for module project:

Add the following projects in the Java build path of this project:

com.ofss.digx.cz.adapter, com.ofss.digx.cz.app.xface

 Classpath variables:

Extend the following classpath variables to the jars found in OBDX_Installer:

Classpath variable
name

Jars to extend

DIGX_LIB com.ofss.digx.framework.domain.jar

com.ofss.digx.infra.jar

com.ofss.digx.appcore.jar

com.ofss.digx.common.jar

com.ofss.digx.datatype.jar

com.ofss.digx.adapter.jar

com.ofss.digx.module.alerts.jar

com.ofss.digx.module.approval.jar

com.ofss.digx.module.party.jar

com.ofss.digx.enumeration.jar

com.ofss.digx.module.common.jar

com.ofss.digx.appcore.dto.jar

OBP_LIB com.ofss.fc.framework.domain.jar

com.ofss.fc.enumeration.jar

com.ofss.fc.datatype.jar

com.ofss.obp.patch.jar

com.ofss.fc.infra.jar

com.ofss.fc.appcore.dto.jar

com.ofss.fc.appcore.jar

com.ofss.fc.framework.dto.jar

Workspace Setup

Extensibility Guide 75

8.5 Adapter

Create a Java Project with name com.ofss.digx.cz.extxface which contains all the Adapter
Interfaces in this project. This project is required if you are creating new adapter interfaces. Within
this project create a package with the name
com.ofss.digx.cz.extxface.<module_name>.adapter. Now include the adapter interface for the
adapter implementation class for your module. For example, in case of Account module, name of
the interface created should be IAccountAdapter.

 Project dependencies for adapter project:

Add the following projects in the Java build path of this project:

com.ofss.digx.cz.app.xface

 Classpath variables:

Extend the following classpath variables to the jars found in OBDX_Installer:

Classpath name Jars to extend

DIGX_LIB com.ofss.digx.infra.jar

8.6 Adapter Impl

Create a project with name com.ofss.digx.cz.extxface.<Host Name>.impl This project will
contain implementation classes for all the adapter interfaces created in the
com.ofss.digx.cz.adapter project for required host. Create a package named
com.ofss.digx.cz.extxface.<module_name>.adapter.impl and add the following classes:

1. <module_name>AdapterFactory.java : Factory class to generate Adapter instances for
every getAdapter request call. Returns either mock adapter or adapter to call host interface

2. <module_name>Adapter.java: A very essential Adapter class for a specific module which is
entitled to call external host system

3. <module_name>MockAdapter.java: In case a call to host system needs to be skipped and
local mocked data needs to be fetched, this adapter class can be used

Project dependencies for adapter impl project:

Add the following projects in the Java build path of this project:

com.ofss.digx.cz.adapter

com.ofss.digx.cz.app.xface

com.ofss.digx.cz.module.<module_name>

Classpath variables:

Extend the following classpath variables to the jars found in OBDX_Installer:

Workspace Setup

Extensibility Guide 76

Classpath name Jars to extend

DIGX_LIB com.ofss.digx.appcore.dto.jar

com.ofss.digx.infra.jar

com.ofss.digx.adapter.jar

com.ofss.digx.datatype.jar

OBP_LIB com.ofss.fc.framework.dto.jar

Database Scripts to be added:

There are few places where we decide which classes to be invoked in runtime. These are the
possible database configurations done in an ideal case. Please add the following entries in the
DIGX_FW_CONFIG_ALL_B table: (Account Service taken as an example and in accordance with
the workspace example)

INSERT INTO digx_fw_config_all_b (PROP_ID, CATEGORY_ID, PROP_VALUE,
FACTORY_SHIPPED_FLAG, PROP_COMMENTS, SUMMARY_TEXT,
CREATED_BY, CREATION_DATE, LAST_UPDATED_BY, LAST_UPDATED_DATE,
OBJECT_STATUS, OBJECT_VERSION_NUMBER) VALUES
('ACCOUNT_CZ_REPOSITORY_ADAPTER', 'repositoryadapterconfig',
'com.ofss.digx.domain.account.entity.repository.adapter.RemoteAccountRepositoryAda
pter', 'N', null, 'Adapter repository adapter class', 'ofssuser', sysdate, 'ofssuser', sysdate,
'Y', 1);

INSERT INTO digx_fw_config_all_b (PROP_ID, CATEGORY_ID, PROP_VALUE,
FACTORY_SHIPPED_FLAG, PROP_COMMENTS, SUMMARY_TEXT,
CREATED_BY, CREATION_DATE, LAST_UPDATED_BY, LAST_UPDATED_DATE,
OBJECT_STATUS, OBJECT_VERSION_NUMBER) VALUES
('ACCOUNT_CZ_ADAPTER_FACTORY', 'adapterfactoryconfig',
'com.ofss.digx.app.account.adapter.impl.AccountAdapterFactory', 'N', null, 'adapter
factory class', 'ofssuser', sysdate, 'ofssuser', sysdate, 'Y', 1);

INSERT INTO digx_fw_config_all_b (PROP_ID, CATEGORY_ID, PROP_VALUE,
FACTORY_SHIPPED_FLAG, PROP_COMMENTS, SUMMARY_TEXT,
CREATED_BY, CREATION_DATE, LAST_UPDATED_BY, LAST_UPDATED_DATE,
OBJECT_STATUS, OBJECT_VERSION_NUMBER) VALUES
('ACCOUNT_CZ_ADAPTER_MOCKED', 'adapterfactoryconfig', 'false', 'N', null, 'Flag to
decide to go to Mocked adapter or Remote', 'ofssuser', sysdate, 'ofssuser', sysdate, 'Y',
1);

Workspace Setup

Extensibility Guide 77

8.7 SOAP client

This is a project that will contain stubs that will be used to invoke Host services. This can contain
stubs generated by importing the WSDL published by host. This is an optional project and
depends on the kind of host integration pattern followed.

Home

Workspace Setup

Extensibility Guide 78

9. Deployment

Package customized code in library EAR:

Once all the classes are created and implemented, generate the required ear deployments. The
following two EARs need to be created: com.ofss.digx.cz.app.extsystem.ear and
obdx.cz.app.domain.ear.

To generate an EAR in eclipse, we need to create an Enterprise Application Project and include
the required project/s during the creation.

Deploying application in Weblogic:

The two EARs created should be deployed in the existing deployment setup. Please deploy the
com.ofss.digx.app.rest.idm.ear as an application and com.ofss.digx.cz.app.extsystem.ear and
obdx.app.cz.domain.ear as library.

Test the application:

Once the application is up, please go to the deployments section of the Weblogic Server. In the
control option, you’ll find the option to test the application. Just to verify, check whether the
context-root of the custom application is changed to digx/cz. The request URL for testing this
application will be –s

http://<hostname>:<port>/digx/cz/v1/application.wadl

Home

